An andon light is a color-coded visual display for process state control; in short: On-Air light
I used a light tower/andon light which a good friend Spert modified to fit 6 leds in it.
The first version listens on a serial port and change the lights depending on the data it receives. On the PC, an application listens to the midi signals and above certain channel thresholds, it will send out the correct signal data over the serial port.
Click here to view the source code
//#define _DEBUG
enum SwitchMode
{
Slow,
Normal,
Fast
};
enum LoopMode
{
SingleShot,
Bounce,
Loop
};
enum Pins
{
Red = 0,
Orange,
Green,
Blue
};
const int pTelephone = 15;
void DebugPrint( char* _strInfo )
{
#ifdef _DEBUG
Serial.println( _strInfo );
#endif
}
void DebugPrint( int _nInfo )
{
#ifdef _DEBUG
Serial.print( _nInfo );
Serial.print( ", " );
#endif
}
// The analogue have 17 values due to inverse square law on led brighness
static const byte MAX_INDEX = 16;
static const byte s_fadeValues[] = { 255, 180, 128, 90, 64, 45, 32, 23, 16, 12, 8, 6, 4, 3, 2, 1, 0 };
static const byte s_slowBlinkValues[] = { 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static const byte s_fastBlinkValues[] = { 255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255, 0, 0, 0, 0 };
// the colors are red, orange, green and blue respectively
// serial light instructions
static const byte s_onCommand[] = { '!', '@', '#', '$' };
static const byte s_offCommand[] = { '1', '2', '3', '4' };
// output pins
static const byte s_pins[] = { 3, 5, 6, 9 };
// values (off)
volatile byte g_values[] = { MAX_INDEX, MAX_INDEX, MAX_INDEX, MAX_INDEX };
// step
volatile byte g_step[] = { 0, 0, 0, 0 };
// light operation modes
volatile SwitchMode g_eSwitchMode[] = { Normal, Normal, Normal, Normal };
volatile SwitchMode g_eCurrentSwitchMode = Normal;
volatile LoopMode g_eLoopMode[] = { SingleShot, SingleShot, SingleShot, SingleShot };
volatile LoopMode g_eCurrentLoopMode = SingleShot;
void setup( )
{
Serial.begin( 9600 );
// make it output
pinMode( s_pins[ Red ], OUTPUT );
pinMode( s_pins[ Orange ], OUTPUT );
pinMode( s_pins[ Green ], OUTPUT );
pinMode( s_pins[ Blue ], OUTPUT );
/*
pinMode( pTelephone, INPUT );
digitalWrite( pTelephone, LOW );
pinMode( 14, INPUT );
digitalWrite( 14, LOW );
pinMode( 20, INPUT );
digitalWrite( 20, LOW );
*/
// wait to make sure serial is initialized on the host
delay(1000);
DebugPrint( "initialization done, starting demo mode" );
demoMode( );
}
void loop( )
{
byte idx;
byte nCurrentPinValue;
// check if data has been sent from the computer:
if (Serial.available( ))
{
byte input;
// read the most recent byte (which will be from 0 to 255):
input = Serial.read( );
switch ( input )
{
// switch mode
case 's':
case 'S':
DebugPrint( "switching to slow mode" );
g_eCurrentSwitchMode = Slow;
break;
case 'n':
case 'N':
DebugPrint( "switching to normal mode" );
g_eCurrentSwitchMode = Normal;
break;
case 'f':
case 'F':
DebugPrint( "switching to fast mode" );
g_eCurrentSwitchMode = Fast;
break;
// loop mode
case 'o':
case 'O':
DebugPrint( "switching to single shot mode" );
g_eCurrentLoopMode = SingleShot; // aka once
break;
case 'b':
case 'B':
DebugPrint( "switching to bounce mode" );
g_eCurrentLoopMode = Bounce;
break;
case 'l':
case 'L':
DebugPrint( "switching to loop mode" );
g_eCurrentLoopMode = Loop;
break;
// version
case 'v':
case 'V':
case 'h':
case 'H':
Serial.println("xopr's Andon Light v0.2");
Serial.println("");
Serial.println(" Usage:");
Serial.println(" [snf]?[obl]?([1234]|[!@#$])");
Serial.println("");
Serial.println(" Switch modes:");
Serial.println(" [s]low");
Serial.println(" [n]ormal");
Serial.println(" [f]ast");
Serial.println("");
Serial.println(" Loop modes:");
Serial.println(" [o]ne shot");
Serial.println(" [b]bounce");
Serial.println(" [l]loop");
Serial.println("");
Serial.println(" Lights:");
Serial.println(" {1!}: Red");
Serial.println(" {2@}: Orange");
Serial.println(" {3#}: Green");
Serial.println(" {4$}: Blue");
break;
// assume it's a switch command
default:
for ( idx = 0; idx < 4; idx++ )
{
if ( input == s_onCommand[ idx ] )
{
// apply the optionally prefixed or default modes
applyModes( idx );
// set the stepping, so we know that we need to update the output port
g_step[ idx ] = -1;
// special mode: normal single shot means just toggle the state
if ( g_eSwitchMode[ idx ] == Normal && g_eLoopMode[ idx ] == SingleShot )
{
DebugPrint( "ultra fast on!!1`" );
g_values[ idx ] = -g_step[ idx ];
}
// since we found our character, break out of the loop
break;
}
if ( input == s_offCommand[ idx ] )
{
// set the stepping, so we know that we need to update the output port
g_step[ idx ] = 1;
// special mode: normal single shot means just toggle the state
if ( g_eSwitchMode[ idx ] == Normal && g_eLoopMode[ idx ] == SingleShot )
{
DebugPrint( "ultra fast off!!1`" );
g_values[ idx ] = MAX_INDEX - g_step[ idx ];
}
// apply the optionally prefixed or default modes
applyModes( idx );
// since we found our character, break out of the loop
break;
}
} // for
break;
} // switch input
} // serial.available
// now do the stepping check/iteration on the lights
for ( idx = 0; idx < 4; idx++ )
{
if ( g_step[ idx ] )
{
/*
b0rken
// update the current value, if needed
if ((g_step[ idx ] < 0 && g_values[ idx ] <= 0)
|| (g_step[ idx ] > 0 && g_values[ idx ] >= MAX_INDEX ))
{
g_step[ idx ] = 0;
continue;
}
*/
g_values[ idx ] += g_step[ idx ];
// reached the boundaries? update the stepping (and prolly the loopmode)
if ( g_values[ idx ] <= 0 || g_values[ idx ] >= MAX_INDEX )
{
// reset stepper if we're done with single shot or return
if ( g_eLoopMode[ idx ] == SingleShot )
{
DebugPrint( idx );
DebugPrint( " is done" );
g_step[ idx ] = 0;
}
else
// invert stepping
g_step[ idx ] = -g_step[ idx ];
// after a bounce, loopmode changes into single shot
if ( g_eLoopMode[ idx ] == Bounce )
{
DebugPrint( idx );
DebugPrint( " bounced to single shot mode" );
g_eLoopMode[ idx ] = SingleShot;
}
}
switch ( g_eSwitchMode[ idx ] )
{
case Slow:
nCurrentPinValue = s_fadeValues[ min( g_values[ idx ], MAX_INDEX ) ];
break;
case Normal:
nCurrentPinValue = s_slowBlinkValues[ min( g_values[ idx ], MAX_INDEX ) ];
break;
case Fast:
nCurrentPinValue = s_fastBlinkValues[ min( g_values[ idx ], MAX_INDEX ) ];
break;
}
analogWrite( s_pins[ idx ], nCurrentPinValue );
} // if stepping
} // for
/*
if ( digitalRead( pTelephone ) == LOW )
digitalWrite( s_pins[ Blue ], HIGH );
if ( analogRead( pTelephone ) >= 1022 )
digitalWrite( s_pins[ Blue ], HIGH );
*/
/*
Serial.println( analogRead( pTelephone ) );
Serial.println( analogRead( pTelephone ) );
Serial.print( " " );
Serial.print( analogRead( 14 ) );
Serial.print( " " );
Serial.print( analogRead( 15 ) );
Serial.print( " " );
Serial.print( analogRead( 16 ) );
Serial.print( " " );
Serial.println( analogRead( 17 ) );
*/
delay( 50 );
}
void applyModes( byte _idx )
{
// apply the current modes
if ( g_eSwitchMode[ _idx ] != g_eCurrentSwitchMode || g_eLoopMode[ _idx ] != g_eCurrentLoopMode )
{
g_eSwitchMode[ _idx ] = g_eCurrentSwitchMode;
g_eLoopMode[ _idx ] = g_eCurrentLoopMode;
DebugPrint( _idx );
DebugPrint( " has new mode applied" );
}
// reset the current modes
g_eCurrentSwitchMode = Normal;
g_eCurrentLoopMode = SingleShot;
}
void demoMode( )
{
byte idx;
// set values and stepping
g_values[ Red ] = 17;
g_values[ Orange ] = 13;
g_values[ Green ] = 10;
g_values[ Blue ] = 6;
for ( idx = 0; idx < 4; idx++ )
g_step[ idx ] = -1;
while ( !Serial.available( ))
{
for ( idx = 0; idx < 4; idx++ )
{
g_values[ idx ] += g_step[ idx ];
if ( g_values[ idx ] >= 30 )
{
//DebugPrint( idx );
//DebugPrint( ": value >= 30 == off" );
g_step[ idx ] = -1;
}
else if ( g_values[ idx ] <= 0 )
{
//DebugPrint( idx );
//DebugPrint( ": value <= 30 == on" );
g_step[ idx ] = 1;
}
analogWrite( s_pins[ idx ], s_fadeValues[ min( g_values[ idx ], MAX_INDEX ) ] );
}
delay( 50 );
}
DebugPrint( "end of demo mode. cleaning up" );
for ( idx = 0; idx < 4; idx++ )
{
g_step[ idx] = 0;
g_values[ idx ] = MAX_INDEX;
digitalWrite( s_pins[ idx ], LOW);
}
}
Currently being worked on..